Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2256306

ABSTRACT

Shikonin, a phytochemical present in the roots of Lithospermum erythrorhizon, is well-known for its broad-spectrum activity against cancer, oxidative stress, inflammation, viruses, and anti-COVID-19 agents. A recent report based on a crystallographic study revealed a distinct conformation of shikonin binding to the SARS-CoV-2 main protease (Mpro), suggesting the possibility of designing potential inhibitors based on shikonin derivatives. The present study aimed to identify potential shikonin derivatives targeting the Mpro of COVID-19 by using molecular docking and molecular dynamics simulations. A total of 20 shikonin derivatives were screened, of which few derivatives showed higher binding affinity than shikonin. Following the MM-GBSA binding energy calculations using the docked structures, four derivatives were retained with the highest binding energy and subjected to molecular dynamics simulation. Molecular dynamics simulation studies suggested that alpha-methyl-n-butyl shikonin, beta-hydroxyisovaleryl shikonin, and lithospermidin-B interacted with two conserved residues, His41 and Cys145, through multiple bonding in the catalytic sites. This suggests that these residues may effectively suppress SARS-CoV-2 progression by inhibiting Mpro. Taken together, the present in silico study concluded that shikonin derivatives may play an influential role in Mpro inhibition.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Molecular Docking Simulation , Protease Inhibitors/chemistry , Catalytic Domain , Antiviral Agents/pharmacology
2.
Immunol Lett ; 226: 38-45, 2020 10.
Article in English | MEDLINE | ID: covidwho-643130

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of deadly Coronavirus disease-19 (COVID-19) pandemic, which emerged as a major threat to public health across the world. Although there is no clear gender or socioeconomic discrimination in the incidence of COVID-19, individuals who are older adults and/or with comorbidities and compromised immunity have a relatively higher risk of contracting this disease. Since no specific drug has yet been discovered, strengthening immunity along with maintaining a healthy living is the best way to survive this disease. As a healthy practice, calorie restriction in the form of intermittent fasting (IF) in several clinical settings has been reported to promote several health benefits, including priming of the immune response. This dietary restriction also activates autophagy, a cell surveillance system that boosts up immunity. With these prevailing significance in priming host defense, IF could be a potential strategy amid this outbreak to fighting off SARS-CoV-2 infection. Currently, no review so far available proposing IF as an encouraging strategy in the prevention of COVID-19. A comprehensive review has therefore been planned to highlight the beneficial role of fasting in immunity and autophagy, that underlie the possible defense against SARS-CoV-2 infection. The COVID-19 pathogenesis and its impact on host immune response have also been briefly outlined. This review aimed at revisiting the immunomodulatory potential of IF that may constitute a promising preventive approach against COVID-19.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/etiology , Coronavirus Infections/metabolism , Disease Susceptibility , Fasting , Host-Pathogen Interactions , Pneumonia, Viral/etiology , Pneumonia, Viral/metabolism , Autophagy , COVID-19 , Caloric Restriction , Disease Resistance/immunology , Disease Susceptibility/immunology , Fasting/metabolism , Host-Pathogen Interactions/immunology , Humans , Immune Evasion , Immunity , Pandemics , SARS-CoV-2
3.
Drug Dev Res ; 2020 Jul 06.
Article in English | MEDLINE | ID: covidwho-633786

ABSTRACT

Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most contagious diseases in human history that has already affected millions of lives worldwide. To date, no vaccines or effective therapeutics have been discovered yet that may successfully treat COVID-19 patients or contain the transmission of the virus. Scientific communities across the globe responded rapidly and have been working relentlessly to develop drugs and vaccines, which may require considerable time. In this uncertainty, repurposing the existing antiviral drugs could be the best strategy to speed up the discovery of effective therapeutics against SARS-CoV-2. Moreover, drug repurposing may leave some vital information on druggable targets that could be capitalized in target-based drug discovery. Information on possible drug targets and the progress on therapeutic and vaccine development also needs to be updated. In this review, we revisited the druggable targets that may hold promise in the development of the anti-SARS-CoV-2 agent. Progresses on the development of potential therapeutics and vaccines that are under the preclinical studies and clinical trials have been highlighted. We anticipate that this review will provide valuable information that would help to accelerate the development of therapeutics and vaccines against SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL